Local layered algorithmic model for topological design of rural telecommunications networks

Román-García Luis M., Mora-Alba María F., Salcedo-González Ante. <u>Iromanga@itam.mx</u>, <u>maria.mora@itam.mx</u>, <u>ante.salcedo@itam.mx</u>

ITAM

Contents

- Contribution
- Introduction
- Methodology & Implementation
- Results
- Future work & conclusions

Contribution

Contributions

- Methodology with a local layered algorithmic approach
- Baseline to estimate infrastructure requirements to deliver broadband coverage to unconnected communities of Mexico
- Consideration of road distances in the network design
- Applicable: We applied our model to two municipalities of the Mexican state of Chiapas
- General: Our model can be applied to other Mexican regions or at other countries

Introduction

Digitalization

- 2014: 40% of the global population used internet
- 2015: 4.5 billion mobile phone users
- Digitalization: "social transformation triggered by the massive adoption of digital technologies to generate, process, share and transact information"
- Proven impact on economy, society and governance
- Critical element is the development of telecommunications, including the design of connectivity networks

Networks at rural communities

- Urban networks are relatively inexpensive and easier to deploy and maintain; rural networks are the opposite
- Low development of the telecommunications networks in rural communities
- 23% of the total population in Mexico live in rural communities many of which lack of telecommunications services like mobile telephony or broadband access

Network design

- Very complex process
- Good network design is difficult to characterize, tradeoffs are necessary
- Topological design:
 - Selection of the network nodes and their location
 - Definition of the mechanisms to connect them
 - Bandwidth capacity of the branches
- We assumed the availability of the primary network, and focus on the secondary networks that need to be deployed

Methodology & implementation

Locality selection criteria

- Maximize impact
 - Little coverage
 - Large populations
- Worst case complexity

Parameter	Villaflores Tessellation	Villa Corzo Tesselation
Connected population	6,278	5,291
% Connected population	88.3%	60.1%
Connected localities	18	21
Km of optic fiber	207.3 km	193.8 km

Future work and conclusions

Future Work

- Randomization in the centroid selection process to avoid bias.
- Incorporate boundary analysis.
- Implement Steiner tree theory to grow the tree.

Conclusion

- Our approach proves itself lightweight and efficient due to the locality constraint.
- The use of road-distances gives more realistic solutions than the Euclidean approach.
- As it can be appreciated with Villa Corzo, different thresholds should be considered depending on the sparsity and distribution of distinct populations.

Thanks